首页> 科研动态> 正文
科研动态
许涛(博士生)、毛旭辉、王旭的论文在Chemical Engineering Journal 刊出
发布时间:2023-09-08 17:43:06 发布者:易真 浏览次数:

Dynamic pore modulation of contracted carbon fiber filter for wastewater treatment: Filtration performance and in-situ regeneration mechanism

作者: Tao Xu, Lin Shi, Senlin Shao, Hui Wang, Yu Huang, Lei Xing, Re Xia, Ruggero Rossi, Liandong Zhu, Hua Zhu, Wulin Yang, Xuhui Mao, Xu Wang

来源出版物: Chemical Engineering Journal:473文献号:145243出版年: 1 October 2023摘要: Antifouling and selectivity are the major challenges in membrane separation technologies. Inspired by membranes with tunable pore sizes in filtration systems, we propose a contracted carbon fibrous filter (CCF) with an inversed-triangle structure (ITS) using commercial carbon fibers that can control the filter pore size by adjusting the external force loading. By increasing the force loading on fibers, CCF pores shrunk from 2.02 to 0.98 µm, while maintaining a high rejection efficiency of kaolin particles (>99%) at a water flux ranging from 679.7 to 354.9 L m-2 h1. The role of the ITS and the filtration mechanism of the carbon fibers was revealed via computational simulations and experimental results. Various cleaning strategies were explored to regenerate CCF performance after fouling. A mean flux recovery of 99.6% could be achieved during the nine-cycle filtration by adjusting the pore size combined with electrocleaning. Additionally, a removal mechanism for internal fouling was proposed. This study demonstrates that the novel CCF provides a simple and reliable strategy for wastewater filtration.

关键词:Wastewater filtration; Contracted carbon fiber; Pore size control; Flux recovery; Antifouling

通讯作者:Xuhui MaoXu Wang

影响因子:15.1


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 开云电竞官方网
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:easylangar.com

Baidu
map