Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfil

Paper published

Title: Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate

Author: Ye, ZH (Ye, Zhihong)[ 1 ] ; Zhang, H (Zhang, Hui)[ 1,2 ] ; Yang, L (Yang, Lin)[ 1 ] ; Wu, LX (Wu, Luxue)[ 1 ] ; Qian, Y (Qian, Yue)[ 1 ] ; Geng, JY (Geng, Jinyao)[ 1 ] ; Chen, MM (Chen, Mengmeng)[ 1 ]

Publication: JOURNAL OF HAZARDOUS MATERIALS volume: 319 : 51-60 special: SI DOI: 10.1016/j.jhazmat.2016.01.027 Time: DEC 5 2016

Type: Article

Language: English

Abstract: The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120 min treatment utilizing the optimum operating conditions of 47 m M H2O2, 0.29 m M Fe2+, pH(0) of 3.0 and a current density of 60 mA/cm(2). The generation of hydroxyl radicals ((OH)-O-center dot) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe2+/chlorine and UV/chlorine processes taking place in this system also result in additional production of (OH)-O-center dot due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5 kWh/kg COD and the current efficiency was 36.4% for 2 h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. (C) 2016 Elsevier B.V. All rights reserved.

Baidu
map