科研成果
博士生朱珑珑的论文在Journal of Environmental Chemical Engineering刊出
发布时间:2022-03-15 14:18:19 发布者:易真 浏览次数:


标题:g-C3N4/rectorite as a highly efficient catalyst for peroxymonosulfate activation to remove organic contaminants in water

作者:Longlong Zhu, Pei-jiang Zhou*, Chaoqi Chen*

来源出版物:JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING10 DOI:10.1016/j.jece.2022.107168出版年:2022

摘要:In recent years, modification of graphite carbon nitride (g-C3N4) has drawn considerable attention because of its catalytic potential. In this study, rectorite was designed as a carrier forg-C3N4, andg-C3N4/rectorite was synthesized via pyrolysis under nitrogen protection. The efficiency ofg-C3N4/rectorite for peroxymonosulfate (PMS) activation was evaluated using acid Orange 7 dye (AO7) as a model organic contaminant. Material characterization suggested the successful synthesis ofg-C3N4/rectorite. The removal of AO7 was significantly enhanced by the composite, compared to pureg-C3N4, rectorite, or their physical mixture. Theg-C3N4content in the composite

affected its catalytic ability, while theg-C3N4/rectorite with 41%g-C3N4content showed the highest catalytic efficiency. Furthermore, the removal of AO7 was affected by catalyst concentration, oxidant concentration, and solution pH. Notably, under the optimized condition (i.e., 0.8 g/L ofg-C3N4/rectorite, 0.20 mg/L of PMS, and 6.0 of pH), an initial concentration of 50 mg/L AO7 was removed to a level below the detection limit (i.e., 0.25 mg/L) within 8 min. A recycling test demonstrated the reusability of theg-C3N4/rectorite in six repeated reactions. Singlet oxygen played a key role in PMS activation, suggesting that the non-radical degraded process is the dominated AO7 removal pathway. The rectorite has a confined effect preventingg-C3N4from agglomeration, inhibiting the electron-hole recombination, and improve the exposure of active sites such as C-O groups, -OH groups, and pyridinic N. Overall,g-C3N4/rectorite is a low-cost and environment-friendly catalyst exhibiting high catalytic activity for PMS activation to remove organic contaminants in water.

作者关键词:g-C3N4/rectorite; Peroxymonosulfate; Organic contaminant; Non-radical pathway

地址:[Zhu Longlong; Peijiang Zhou; Chaoqi Chen] School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, PR China

通讯作者地址:Pei-jiang Zhou (通讯作者) and Chaoqi Chen (通讯作者), School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, PR China

电子邮件地址:zhoupj@whu.edu.cn (P.-j. Zhou), chenchaoqi@whu.edu.cn (C. Chen)

影响因子:5.909


信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © 开云电竞官方网
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:easylangar.com

Baidu
map